
CS 329A, Handout #13Nayak

Logic-based Truth Maintenance
System (LTMS)
• Incrementally maintains consequences of a propositional

theory Σ
– incrementally manages addition and deletions from Σ

• Σ is a set of propositional clauses
– a clause is disjunction of propositional literals

– a unit clause is a clause with exactly one disjunct

– a literal is a proposition or the negation of a proposition

 ¬ rain ∨ ¬ umbrella ∨ dry

– a clause can be read as an implication in different ways

 rain Λ umbrella ⇒ dry

 rain Λ ¬ dry ⇒ ¬umbrella

CS 329A, Handout #13Nayak

Generic LTMS interface

• Updating the clauses in Σ
– add-clause (clause, Σ)

– delete-clause (clause, Σ)

• Propositional inference
– consistent? (Σ)

– follows-from? (literal, Σ)

• Justification structure
– supporting-clause (literal, Σ)

– supporting-literals (literal, Σ)
• the supporting-clause together with the supporting-literals entail literal

• each literal in supporting-literals follows from Σ
• ⊥ is a special literal denoting a contradiction

CS 329A, Handout #13Nayak

Using the LTMS in diagnosis

• LTMS database Σ contains clauses describing component
behavior in each mode (SD)

• Search algorithm adds and deletes clauses corresponding to
assumptions that a component is in a particular mode
– checks that Σ is consistent

– justification structure is used to generate conflicts from an inconsistent Σ

CS 329A, Handout #13Nayak

LTMS labels

• The LTMS labels each proposition true, false, or unknown
– if p is labeled true (false), then Σ logically entails p (¬p)

– labeling algorithm is sound, but not necessarily complete

¬p ∨ ¬q ∨ r
s ∨ p

¬u ∨ v

¬s
q

u ∨ v

Σ Labels

p: true
q: true
r: true
s: false

u: unknown
v:unknown

CS 329A, Handout #13Nayak

Conflicting clauses

• A conflicting clause is one in which all literals are labeled
false
– ¬p ∨ ¬q ∨ r is a conflicting clause if the labels are

p: true, q: true, r: false

• Existence of a conflicting clause means that Σ is inconsistent

• If Σ is inconsistent, supporting-clause(⊥, Σ) returns a
conflicting clause and supporting-literals(⊥, Σ) returns the set
of literals in that clause

CS 329A, Handout #13Nayak

Unit propagation at the fringe

• Unit propagation takes place at the fringe, which consists of all
clauses that have
– exactly one literal labeled unknown

– all other literals labeled false

• Basic unit propagation algorithm
– select a clause from the fringe and propagate until the fringe is empty

or a conflicting clause is detected

CS 329A, Handout #13Nayak

Updating fringe and conflicts

• fringe and conflicts updated when a proposition’s label changes
– only clauses in which the proposition occurs can update fringe or conflicts

• Membership in fringe and conflicts determined incrementally
– track the count of literals in the clause labeled unknown

• decrement (increment) the count when an unknown (true or false) literal
becomes true or false (unknown)

– track whether the clause is satisfied (i.e., contains a literal labeled true)

⇒ A clause is added to (removed from) the fringe if the unknown
literal count becomes (changes from) 1 and it is not (or it is)
satisfied

⇒ A clause is added to (removed from) the conflicts if the unknown
literal count becomes (changes from) 0 and it is not (or it is)
satisfied

CS 329A, Handout #13Nayak

LTMS after initialization

C7: ¬ ok ∨ ¬ uf

C8: ¬ rf ∨ ¬ uf

C3: ¬ ok ∨ a

C6: ¬ ok ∨ ¬ rf

C4: ¬ rf ∨ ia

C9: ¬ a ∨ ¬ ia

C2: ¬ ia ∨ nco

C1: ¬ nci ∨ ¬ a ∨ nco

uf

ok

rf

a

ia

nci

nco

unknown

C10: ok

unknown

unknown unknown

unknown
unknown

unknown
C11: rf

1

2

2

1

2

2

3

2

2 2

Unknown literal count

CS 329A, Handout #13Nayak

C2: ¬ ia ∨ nco

C8: ¬ rf ∨ ¬ uf

C4: ¬ rf ∨ ia

After propagation

C7: ¬ ok ∨ ¬ uf

C3: ¬ ok ∨ a

C6: ¬ ok ∨ ¬ rf

C9: ¬ a ∨ ¬ ia

C1: ¬ nci ∨ ¬ a ∨ nco

uf

ok

rf

a

ia

nci

nco

unknown

C10: ok

false

unknown

C11: rf

0

0

1

0

0

0

2

0

0 1

true

true

true

false

CS 329A, Handout #13Nayak

Well-founded support

• Proposition supports generated by unit propagation form a
directed acyclic graph

⇒ Unit propagation produces well-founded support

• Non-well-founded support contains cycles in the support graph

x

C1: ¬ x∨ y
y

C2: x∨ ¬ y

true true

CS 329A, Handout #13Nayak

Implementing the generic interface

• consistent? (Σ)
– returns true iff Σ has no conflicts after unit propagation terminates

• follows-from? (literal, Σ)
– returns literal’s label after unit propagation terminates

• supporting-clause (literal, Σ)

supporting-literals (literal, Σ)
– returns the clause and literals, respectively, that support literal after unit

propagation terminates

CS 329A, Handout #13Nayak

Incrementally modifying Σ

• add-clause (clause, Σ)
– update clause’s unknown literal count and whether it is satisfied

– update Σ’s fringe and conflicts appropriately

– call propagate (Σ)

⇒ need only do propagations (directly or indirectly) dependent on clause

• delete-clause (clause, Σ)
– follow the support structure to set the label of all propositions (directly

or indirectly) supported by clause to unknown
• update Σ’s fringe and conflicts as labels are changed

⇒ only propagations (directly or indirectly) dependent on clause are
undone

– call propagate (Σ)

CS 329A, Handout #13Nayak

C8: ¬ rf ∨ ¬ uf

C2: ¬ ia ∨ ncoC4: ¬ rf ∨ ia

Before deleting C11

C7: ¬ ok ∨ ¬ uf

C3: ¬ ok ∨ a

C6: ¬ ok ∨ ¬ rf

C9: ¬ a ∨ ¬ ia

C1: ¬ nci ∨ ¬ a ∨ nco

uf

ok

rf

a

ia

nci

nco

unknown

C10: ok

false

unknown

C11: rf

0

0

1

0

0

0

2

0

0 1

true

true

true

false

